Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543863

RESUMEN

BACKGROUND: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses of disease, vaccines are needed to boost and maintain antibody levels capable of neutralizing Omicron. Recently, we produced and characterized a SARS-CoV-2 vaccine based on a recombinant fusion protein consisting of hepatitis B virus (HBV)-derived PreS and two SARS-CoV-2 wild-type RBDs. OBJECTIVES: To develop a PreS-RBD vaccine which induces high levels of Omicron-specific neutralizing antibodies. METHODS: We designed, produced, characterized and compared strain-specific (wild-type: W-PreS-W; Omicron: O-PreS-O), bivalent (mix of W-PreS-W and O-PreS-O) and chimeric (i.e., W-PreS-O) SARS-CoV-2 protein subunit vaccines. Immunogens were characterized in vitro using protein chemical methods, mass spectrometry, and circular dichroism in combination with thermal denaturation and immunological methods. In addition, BALB/c mice were immunized with aluminum-hydroxide-adsorbed proteins and aluminum hydroxide alone (i.e., placebo) to study the specific antibody and cytokine responses, safety and Omicron neutralization. RESULTS: Defined and pure immunogens could be produced in significant quantities as secreted and folded proteins in mammalian cells. The antibodies induced after vaccination with different doses of strain-specific, bivalent and chimeric PreS-RBD fusion proteins reacted with wild-type and Omicron RBD in a dose-dependent manner and resulted in a mixed Th1/Th2 immune response. Interestingly, the RBD-specific IgG levels induced with the different vaccines were comparable, but the W-PreS-O-induced virus neutralization titers against Omicron (median VNT50: 5000) were seven- and twofold higher than the W-PreS-W- and O-PreS-O-specific ones, respectively, and they were six-fold higher than those of the bivalent vaccine. CONCLUSION: Among the tested immunogens, the chimeric PreS-RBD subunit vaccine, W-PreS-O, induced the highest neutralizing antibody titers against Omicron. Thus, W-PreS-O seems to be a highly promising COVID-19 vaccine candidate for further preclinical and clinical evaluation.

2.
EMBO Rep ; 24(11): e57842, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37768718

RESUMEN

Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Linfocitos T , Péptidos/metabolismo , Antígenos , Receptores de Antígenos de Linfocitos T
3.
EBioMedicine ; 96: 104788, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37672867

RESUMEN

BACKGROUND: Patients with inflammatory bowel disease (IBD) and healthy controls received primary SARS-CoV-2-mRNA vaccination and a booster after six months. Anti-TNF-α-treated patients showed significantly lower antibody (Ab) levels and faster waning than α4ß7-integrin-antagonist recipients and controls. This prospective cohort study aimed to elucidate the underlying mechanisms on the basis of circulating T-follicular helper cells (cTfh) and B memory cells. METHODS: We measured SARS-CoV-2- Wuhan and Omicron specific Abs, B- and T-cell subsets at baseline and kinetics of Spike (S)-specific B memory cells along with distributions of activated cTfh subsets before and after primary and booster vaccination. FINDINGS: Lower and faster waning of Ab levels in anti-TNF-α treated IBD patients was associated with low numbers of total and naïve B cells vs. expanded plasmablasts prior to vaccination. Along with their low Ab levels against Wuhan and Omicron VOCs, reduced S-specific B memory cells were identified after the 2nd dose which declined to non-detectable after 6 months. In contrast, IBD patients with α4ß7-integrin-antagonists and controls mounted and retained high Ab levels after the 2nd dose, which was associated with a pronounced increase in S-specific B memory cells that were maintained or expanded up to 6 months. Booster vaccination led to a strong increase of Abs with neutralizing capacity and S-specific B memory cells in these groups, which was not the case in anti-TNF-α treated IBD patients. Of note, Ab levels and S-specific B memory cells in particular post-booster correlated with the activation of cTfh1 cells after primary vaccination. INTERPRETATIONS: The reduced magnitude, persistence and neutralization capacity of SARS-CoV-2 specific Abs after vaccination in anti-TNF-α-treated IBD patients were associated with impaired formation and maintenance of S-specific B memory cells, likely due to absent cTfh1 activation leading to extra-follicular immune responses and diminished B memory cell diversification. These observations have implications for patient-tailored vaccination schedules/vaccines in anti-TNF-α-treated patients, irrespective of their underlying disease. FUNDING: The study was funded by third party funding of the Institute of Specific Prophylaxis and Tropical Medicine at the Medical University Vienna. The funders had no role in study design, data collection, data analyses, interpretation, or writing of report.

4.
Immunol Lett ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37230898
5.
Front Immunol ; 14: 1094694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090735

RESUMEN

Background: Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective: To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods: We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results: We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions: BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.


Asunto(s)
Interleucina-2 , Leucocitos Mononucleares , Ratones , Animales , Humanos , Interleucina-2/metabolismo , Leucocitos Mononucleares/metabolismo , Células Th2 , Alérgenos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
6.
Pharmaceutics ; 15(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37111542

RESUMEN

Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.

7.
Immunol Lett ; 253: 30-40, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608905

RESUMEN

Interstitial lung disease comprises numerous clinical entities posing significant challenges towards a prompt and accurate diagnosis. Amongst the contributing factors are intricate pathophysiological mechanisms, an overlap between conditions, and interobserver disagreement. We developed a model for patient clustering offering an additional approach to such complex clinical cases. The model is based on surface phenotyping of over 40 markers on immune cells isolated from bronchoalveolar lavage in combination with clinical data. Based on the marker expression pattern we constructed an individual immune cell profile, then merged these to create a global profile encompassing various pathologies. The contribution of each participant to the global profile was assessed through dimensionality reduction tools and the ensuing similarity between samples was calculated. Our model enables two approaches. First, assessing the immune cell population landscape similarity between patients within a diagnostic group allows rapid identification of divergent profiles, which is particularly helpful for cases with uncertain diagnoses. Second, sample clustering is based exclusively on the calculated similarity of the immune cell profiles, thereby removing physician bias and relying on cellular nearest neighbors.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Humanos , Líquido del Lavado Bronquioalveolar , Enfermedades Pulmonares Intersticiales/diagnóstico , Lavado Broncoalveolar
8.
J Biol Rhythms ; 38(1): 98-108, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36367167

RESUMEN

Data from human and animal studies are highly suggestive of an influence of time of day of vaccine administration on host immune responses. In this population-based study, we aimed to investigate the effect of time of day of administration of a COVID-19 vector vaccine, ChAdOx1 nCoV-19 (AstraZeneca), on SARS-CoV-2 anti-spike S1 immunoglobulin (IgG) levels. Participants were 803 university employees who received their first vaccine dose in March 2021, had serology data at baseline and at 3 weeks, and were seronegative at baseline. Antibody levels were determined in binding antibody units (BAU/mL) using enzyme-linked immunosorbent assay (ELISA). Generalized additive models (GAM) and linear regression were used to evaluate the association of time of day of vaccination continuously and in hourly bins with antibody levels at 3 weeks. Participants had a mean age of 42 years (SD: 12; range: 21-74) and 60% were female. Time of day of vaccination was associated non-linearly ("reverse J-shape") with antibody levels. Morning vaccination was associated with the highest (9:00-10:00 h: mean 292.1 BAU/mL; SD: 262.1), early afternoon vaccination with the lowest (12:00-13:00 h: mean 217.3 BAU/mL; SD: 153.6), and late afternoon vaccination with intermediate (14:00-15:00 h: mean 280.7 BAU/mL; SD: 262.4) antibody levels. Antibody levels induced by 12:00-13:00 h vaccination (but not other time intervals) were significantly lower compared to 9:00-10:00 h vaccination after adjusting for potential confounders (beta coefficient = -75.8, 95% confidence interval [CI] = -131.3, -20.4). Our findings show that time of day of vaccination against SARS-CoV-2 has an impact on the magnitude of IgG antibody levels at 3 weeks. Whether this difference persists after booster vaccine doses and whether it influences the level of protection against COVID-19 needs further evaluation.


Asunto(s)
COVID-19 , ChAdOx1 nCoV-19 , Adulto , Femenino , Humanos , Masculino , Anticuerpos Antivirales , Ritmo Circadiano , Inmunoglobulina G , SARS-CoV-2 , Adulto Joven , Persona de Mediana Edad , Anciano
9.
Wien Klin Wochenschr ; 135(7-8): 177-184, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35689113

RESUMEN

Ixodes ricinus is the most relevant vector for tick-borne diseases in Austria and responsible for the transmission of Borrelia burgdorferi sensu lato (s. l.), which causes Lyme borreliosis in humans; however, also other bacteria and protozoa can be found in ticks and have the potential of infecting people and animals. In this study we collected ticks in popular recreational areas in the city of Vienna in the years 2019 and 2020 and analyzed them for the presence of such putative pathogenic microorganisms. By using reverse line blot (RLB) hybridization we detected DNA of B. burgdorferi s. l., Rickettsia spp., Babesia spp., Candidatus Neoehrlichia mikurensis (CNM) and Anaplasma phagocytophilum. Moreover, we also screened them for the relapsing fever spirochete Borrelia miyamotoi employing real-time PCR. The most frequently detected pathogens were B. burgdorferi s. l. in 28.6% of the ticks in 2019 and 21.3% of the ticks in 2020. The genus Rickettsia was detected in 13.8% of the ticks from 2019 and only in 4.6% from 2020. Babesia spp. were detected in 5.7% in 2019 and 4.2% in 2020. Furthermore, we detected CNM in 4.0% (2019) and 5.6% (2020), A. phagocytophilum in 0.5% (2019) and 1.3% (2020) and finally B. miyamotoi in 3.3% (2019) and 1.7% (2020). Collectively, we show that various microorganisms are prevalent in ticks collected in Vienna and identify hotspots for B. miyamotoi, which we have detected for the first time in the city.


Asunto(s)
Anaplasma phagocytophilum , Ixodes , Enfermedad de Lyme , Rickettsia , Humanos , Animales , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Rickettsia/genética , Anaplasma phagocytophilum/genética , Austria
10.
Microorganisms ; 10(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557742

RESUMEN

Chlamydia trachomatis (Ct) is the most common cause of genital tract infections as well as preventable blindness worldwide. Pattern recognition receptors such as toll-like receptors (TLRs) represent the initial step in recognizing pathogenic microorganisms and are crucial for the initiation of an appropriate immune response. However, our understanding of TLR-signaling in Chlamydia-infected immune cells is incomplete. For a better comprehension of pathological inflammatory responses, robust models for interrogating TLR-signaling upon chlamydial infections are needed. To analyze the TLR response, we developed and utilized a highly sensitive and selective fluorescent transcriptional cellular reporter system to measure the activity of the transcription factor NF-κB. Upon incubation of the reporter cells with different preparations of Ct, we were able to pinpoint which components of TLRs are involved in the recognition of Ct. We identified CD14 associated with unique characteristics of different serovars as the crucial factor of the TLR4/CD14/MD2 complex for Ct-mediated activation of the NF-κB pathway. Furthermore, we found the TLR4/CD14/MD2 complex to be decisive for the uptake of Ct-derived lipopolysaccharides but not for infection and replication of Ct. Imaging flow cytometry provided information about inclusion formation in myeloid- as well as lymphocytic cells and was highest for Ct L2 with at least 25% of inclusion forming cells. Ct E inclusion formation was eminent in Jurkat cells without CD14 expression (11.1%). Thus, our model enables to determine Ct uptake and signal induction by pinpointing individual components of the recognition and signaling pathways to better understand the immune response towards infectious pathogens.

11.
Front Immunol ; 13: 958581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081512

RESUMEN

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Previously, we identified the human milk glycoprotein lactoferrin as a natural inhibitor of plasminogen conversion to plasmin, a serine protease homologous to TMPRSS2. Here, we tested whether lactoferrin and lactoferricin, a biologically active natural peptide produced by pepsin-mediated digestion of lactoferrin, together with synthetic peptides derived from lactoferrin, were able to block TMPRSS2 and SARS-CoV-2 infection. Particularly, we revealed that both lactoferricin and the N-terminal synthetic peptide pLF1 significantly inhibited: i) proteolytic activity of TMPRSS2 and plasmin, ii) proteolytic processing of the SARS-CoV-2 spike protein, and iii) SARS-CoV-2 infection of SARS-CoV-2-permissive cells. Thus, natural and synthetic peptides derived from lactoferrin represent feasible candidates for supporting prevention and treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lactoferrina , SARS-CoV-2 , Serina Endopeptidasas , Inhibidores de Serina Proteinasa , Fibrinolisina , Humanos , Lactoferrina/farmacología , Pandemias , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Glicoproteína de la Espiga del Coronavirus
12.
Immunol Lett ; 250: 1-6, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108774

RESUMEN

Antibody testing after COVID-19 vaccination is generally not recommended. Here, we present the results of a retrospective study, in which we analyzed antibody levels before and after the first dose of the ChAdOx1 vector vaccine. We identified 5% non-responders (43.6 ± 10.6 years; females: 41%) and 3.4% low-responders (44.2 ± 10.1 years; females: 64%) after the first dose. Of these, 61 individuals received a timely second dose either with a homologous (ChAdOx1/ChAdOx1) or heterologous (ChAdOx1/mRNA-1273) schedule. All vaccinees achieved positive S1-specific IgG titers to the ancestral SARS-CoV-2 strain after the second dose, but antibody levels as well as neutralization titers against the ancestral SARS-CoV-2 strain were higher after the heterologous schedule. However, Omicron-specific neutralizing antibodies were not detectable after two doses in either group, indicating that a third vaccine dose is needed to enhance cross-reactive antibodies against currently circulating and emerging variants of concern.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Femenino , Humanos , Inmunoglobulina G , Estudios Retrospectivos , SARS-CoV-2 , Seroconversión , Vacunación
13.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166299

RESUMEN

During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Humanos , Ixodes/fisiología
14.
Front Immunol ; 13: 889138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634285

RESUMEN

Background: Individuals with secondary immunodeficiencies belong to the most vulnerable groups to succumb to COVID-19 and thus are prioritized for SARS-CoV-2 vaccination. However, knowledge about the persistence and anamnestic responses following SARS-CoV-2-mRNA vaccinations is limited in these patients. Methods: In a prospective, open-label, phase four trial we analyzed S1-specific IgG, neutralizing antibodies and cytokine responses in previously non-infected patients with cancer or autoimmune disease during primary mRNA vaccination and up to one month after booster. Results: 263 patients with solid tumors (SOT, n=63), multiple myeloma (MM, n=70), inflammatory bowel diseases (IBD, n=130) and 66 controls were analyzed. One month after the two-dose primary vaccination the highest non-responder rate was associated with lower CD19+ B-cell counts and was found in MM patients (17%). S1-specific IgG levels correlated with IL-2 and IFN-γ responses in controls and IBD patients, but not in cancer patients. Six months after the second dose, 18% of patients with MM, 10% with SOT and 4% with IBD became seronegative; no one from the control group became negative. However, in IBD patients treated with TNF-α inhibitors, antibody levels declined more rapidly than in controls. Overall, vaccination with mRNA-1273 led to higher antibody levels than with BNT162b2. Importantly, booster vaccination increased antibody levels >8-fold in seroresponders and induced anamnestic responses even in those with undetectable pre-booster antibody levels. Nevertheless, in IBD patients with TNF-α inhibitors even after booster vaccination, antibody levels were lower than in untreated IBD patients and controls. Conclusion: Immunomonitoring of vaccine-specific antibody and cellular responses seems advisable to identify vaccination failures and consequently establishing personalized vaccination schedules, including shorter booster intervals, and helps to improve vaccine effectiveness in all patients with secondary immunodeficiencies. Trial registration: EudraCT Number: 2021-000291-11.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Mieloma Múltiple , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunización Secundaria , Huésped Inmunocomprometido , Inmunoglobulina G , Memoria Inmunológica , Mieloma Múltiple/terapia , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Factor de Necrosis Tumoral alfa , Vacunación
15.
Allergy ; 77(8): 2431-2445, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35357709

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunoglobulina G , Pandemias/prevención & control , Conejos , Glicoproteína de la Espiga del Coronavirus/inmunología
16.
Front Med (Lausanne) ; 9: 822316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242786

RESUMEN

In a SARS-CoV-2 seroprevalence study conducted with 1,655 working adults in spring of 2020, 12 of the subjects presented with positive neutralization test (NT) titers (>1:10). They were here followed up for 1 year to assess their Ab persistence. We report that 7/12 individuals (58%) had NT_50 titers ≥1:50 and S1-specific IgG ≥50 BAU/ml 1 year after mild COVID-19 infection. S1-specific IgG were retained until a year when these levels were at least >60 BAU/ml at 3 months post-infection. For both the initial fast and subsequent slow decline phase of Abs, we observed a significant correlation between NT_50 titers and S1-specific IgG and thus propose S1-IgG of 60 BAU/ml 3 months post-infection as a potential threshold to predict neutralizing Ab persistence for 1 year. NT_50 titers and S1-specific IgG also correlated with circulating S1-specific memory B-cells. SARS-CoV-2-specific Ab levels after primary mRNA vaccination in healthy controls were higher (Geometric Mean Concentration [GMC] 3158 BAU/ml [CI 2592 to 3848]) than after mild COVID-19 infection (GMC 82 BAU/ml [CI 48 to 139]), but showed a stronger fold-decline within 5-6 months (0.20-fold, to GMC 619 BAU/ml [CI 479 to 801] vs. 0.56-fold, to GMC 46 BAU/ml [CI 26 to 82]). Of particular interest, the decline of both infection- and vaccine-induced Abs correlated with body mass index. Our data contribute to describe decline and persistence of SARS-CoV-2-specific Abs after infection and vaccination, yet the relevance of the maintained Ab levels for protection against infection and/or disease depends on the so far undefined correlate of protection.

18.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023830

RESUMEN

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNγ and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Interferón gamma/farmacología , SARS-CoV-2/patogenicidad , Inmunidad Adaptativa/inmunología , Animales , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Peptidil-Dipeptidasa A/genética , Glicoproteína de la Espiga del Coronavirus/genética
19.
Ticks Tick Borne Dis ; 13(1): 101851, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662801

RESUMEN

Whether infection with Borrelia burgdorferi sensu lato (sl) can cause nonspecific symptoms is a matter of controversy. We investigated whether individuals infected with B. burgdorferi sl develop unspecific symptoms more frequently than non-infected controls. Eighty-nine persons having presented with B. burgdorferi sl infection between 2015 and 2019 were asked to participate. The infection was defined as erythema migrans diagnosed either in the course of a previous study, during medical visits in the outpatient department, or as seroconversion in asymptomatic subjects. The control group consisted of 85 seronegative individuals without erythema migrans in the past. About two and a half years later, participants were asked to fill out a questionnaire with a list of nonspecific symptoms. The data of 37 persons with previous Borrelia infection and 49 uninfected controls were available for analysis. Muscle pain was significantly (P = 0.040) more frequent in the control group. Fatigue occurred more often in the infected group, but this was not statistically significant (P = 0.109). Likewise, the distribution of other symptoms did not differ considerably. The analysis revealed no difference in the frequency of symptoms of persons who had EM or asymptomatic Borrelia infection 2 years prior assessment in comparison to persons without Borrelia infection.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Eritema Crónico Migrans , Enfermedad de Lyme , Humanos , Enfermedad de Lyme/epidemiología , Estudios Retrospectivos
20.
Pathogens ; 10(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34959572

RESUMEN

Chlamydia trachomatis is an obligate intracellular pathogenic bacterium with a biphasic developmental cycle manifesting two distinct morphological forms: infectious elementary bodies (EBs) and replicative intracellular reticulate bodies (RBs). Current standard protocols for quantification of the isolates assess infectious particles by titering inclusion-forming units, using permissive cell lines, and analyzing via immunofluorescence. Enumeration of total particle counts is achieved by counting labeled EBs/RBs using a fluorescence microscope. Both methods are time-consuming with a high risk of observer bias. For a better assessment of C. trachomatis preparations, we developed a simple and time-saving flow cytometry-based workflow for quantifying small particles, such as EBs with a size of 300 nm. This included optimization of gain and threshold settings with the addition of a neutral density filter for small-particle discrimination. The nucleic acid dye SYBR® Green I (SGI) was used together with propidium iodide and 5(6)-carboxyfluorescein diacetate to enumerate and discriminate between live and dead bacteria. We found no significant differences between the direct particle count of SGI-stained C. trachomatis preparations measured by microscopy or flow cytometry (p > 0.05). Furthermore, we completed our results by introducing a cell culture-independent viability assay. Our measurements showed very good reproducibility and comparability to the existing state-of-the-art methods, indicating that the evaluation of C. trachomatis preparations by flow cytometry is a fast and reliable method. Thus, our method facilitates an improved assessment of the quality of C. trachomatis preparations for downstream applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...